TTPos Operating System Model

J. Jun J. Hlavicka,
Czech Technical University in Prague

Our team received the break-by-wire application in a form of C-functions. The functions should be run as tasks
on the host computer. We decided to implement a simplified version of the TTPos (see Subsection 1.2.1) in our
model in order to be able to run tasks in a specific time relatively to the beginning of the cluster cycle. The
secondary benefit of the TTPos implementation is making further development of applications easier even
without a deeper knowledge of the C-Sim environment. The C-Sim environment is in the most part screened out
by the functions offered by the operating system.

Task definition Task Interrupt handler
A A . .
? i Application
CNI access
Task table Interrupt table
service
i time modes o enabled [
—| time | modes ® enabled ([
time modes o enabled ®
time modes o enabled [0S
Interr. handling
Core > service
interrupt
v CNI Protocol Stat
. rotocol Status TTP
CNI interrupt Field & CNI
Interrupt Status Controller
Field

Figure 1: TTPos simulation

1 Structure

The model of the operating system consists of three conceptual parts, the core of the operating system, the
interrupt handling service, and the CNI access service (Figure 1). The real TTPos runs a fixed number of tasks at
time points defined in the TTPBuild tool. In the TTP/C simulation a task has a form of a C-function. The pointer
to this function is stored in the Task table data structure. The core of the operating system has the task to run
cyclically all tasks registered in the Task table. An entry of the Task table contains also the time field and the
modes field. The time field defines the time point of the task execution. Its value is in macroticks

and is relative to the beginning of the cluster cycle. The modes field defines the modes in which the task will be
executed. Another important data structure of the operating system is the Interrupt table. The pointers to the
particular interrupt handlers are stored in this table. Each entry has an enable switch which determines whether
the interrupt handler will be called if the controller raises the corresponding interrupt. The access module
facilitates storing and reading data from the message area of the CNI and some other important fields of the CNI.

2 Core

2.1 Functionality

The core of the operating system fulfills the following tasks:
1. turns the controller on
waits for the controller ready field to be set
sets the interrupt enable field
synchronizes with the controller
schedules tasks and host life-sign update by means of time interrupt TI1
guards the timeout for the interrupts
. activates the interrupt handling module
Items 1 to 4 are specified in [Spec99] section 10.1.1. We received a more detailed information about the
mechanism of the task scheduling from TTTech GmbH.

N UL

2.2 Implementation

The core of the OS was implemented as a state machine whose behavior is depicted in Figure 3-2.

Application

Ready

Figure 2: Core states

The actions associated with the states are listed in Tablel. The conditions of the transitions between these states
are listed in Table 2.

state action
OFF no action
Init Initialization of the OS
Init Task enabling the interrupts, running the initialization task
Ready updates the life-sign every TDMA round, waits for valid C-State (node is
synchronized)
Synchronized starts the tasks execution
Startup passes interrupt signals, executes tasks, guards the timeouts, triggers the mode
change
Application passes interrupt signals, executes tasks, guards the timeouts
Error executes the error handler

Table 1 States of the core

No. From To Event
1 OFF Init start allowed by application
Init Init Task always

3 Init Ready controller ready

4 Init Error controller not ready

5 Ready Error node did not synchronize within one cluster
cycle

6 Ready Synchronized node is synchronized with the cluster

7 Synchronized Startup current mode is not the application mode

8 Synchronized Application current mode is the application mode

9 Startup Application current mode is the application mode

10 Application Error protocol error or bus guardian error occurred
or timeout expired.

11 OFF Error controller ON

12 Error OFF always

13 Application Startup current mode is the startup mode

Table 2 State transitions of the core

3 Task Scheduling

3.1 Mechanism

The mechanism of scheduling the tasks uses the time interrupt til. The controller rises a time interrupt, the OS
runs a task and sets the timer1 according to the time difference between the current task and the following one.
Then the OS process falls to sleep and waits in a sleep state to be woken up by the scheduled time interrupt. If no
interrupt is received for an interval longer then one TDMA round, the OS wakes up and transits into the ERROR
state.

3.2 Life-Sign Task and Ordinary Task

There are two kinds of tasks. The “host life-sign update” task and the ordinary tasks. Both are scheduled by the
same mechanism. The “host life-sign update” task updates the life-sign of the host which must be done every
TDMA round. Hence every “host life-sign update” task should be set active in all used modes (i.e. the matching
bit in the modes field should be set). No tasks should be run in the startup mode except the life-sign update.

4 Interrupt Handling Service

4.1 Mechanism

The core of the OS activates the interrupt handling service if the controller raised an interrupt' signal or if an
internal operating system interrupt occurred. If the controller raised the interrupt the interrupt handling service
can gather information on the cause of the interrupt from the interrupt status field of the CNI. This information is
stored in the internal data structure called EDM-counter accessible to the application. If an internal OS interrupt
occurs the cause is stored in the EDM-counter as well. Finally a corresponding interrupt handler is triggered.

4.2 EDM-Counter fields

The fields of the EDM-counter data structure are described in Table 3-3:

name description

mi Mode change interrupt

mi Membership lost interrupt

mc Membership changed interrupt

uil User interrupt 1

ui2 User interrupt 2

til* Time interrupt 1

ti2 Time interrupt 2

be BIST error

pe be Protocol error: bus guardian error

pe ae Protocol error: acknowledgement error

pe se Protocol error: clock synchronization error

pe _me Protocol error: max. successive membership failure reached.
pe_mc Protocol error: MEDL CRC error

pe cb Protocol error: communication blackout

pe dc Protocol error: download completed

he so Host error: slot occupied

he mv Host error: mode violation

he ne Host error: NBW protocol error or incorrect EIF
0s_error OS detected errors’

Table 3-3 EDM-counter fields

5 CNI Access Service

The CNI Access Service is a set of functions facilitating the following operations:
a) Storing and reading data into/from the message area of the CNI
b) Triggering a mode change

¢) Reading information about the state of the controller

' The TTP/C C1 Controller uses one signal line to inform the host about an interrupt occurrence.
% The ti1 should not be used by the application since it is used for task scheduling
% In the current OS implementation only the time-out OS error can be raised and no further distinction

is necessary.

5.1 Storing and Reading Data into/from Message Area of CNI

The message area of CNI serves for exchanging application data between the host and the communication
controller. The layout of this area is determined by the current MEDL, which contains the addresses of all
messages sent/received by the SRU. An entry of the CNI message area consists of the message status field and
its associated message data field. The message status field provides information on the transmission of the
frames. The CNI Access service checks the status field in case of reading and sets correctly the status field in
case of storing data into the message area. Various storing/reading functions were implemented for various types
of data.

5.2 Mode Change Triggering

The mode change from the startup mode to the application mode is triggered automatically by the core of the
OS. This service must be initialized before starting the cluster (i.e. the minimal number of nodes and the number
of application mode must be defined). The mode changes between the application modes can be triggered by the
call of the os_request_mode_change function. So far only deferred mode change was implemented.

5 3 Controller State Information

The CNI Access service offers some functions for obtaining the basic information about the state of the
controller. An information about

e current global cluster time

e current slot

e time relative to the beginning of the cluster cycle

can be obtained.

6 Application Programmer Interface

Here we give a description of the most important functions of the operating system model. Description of all
implemented functions can be found in the TTPos manual which can be obtained at the CTU Prague or in the
header files of the operating system model.

6 1Creating and Initializing Controller and Channel

The controller and channel model creation and initialization is described in detail in [Jez01] and [GriO1].
Following actions have to be performed:
e creating two channel instances
e creating the controller instances
e initializing the channels

e setting the channel ID to 0 or 1

e setting the bus guardian callback function
e initializing the controllers

e attaching the controller to the channels

e setting the drift rate of the local clock

e reading the MEDL of the controller

6 2 Creating and Initializing a TTPos

A TTPos instance has to be crated by calling:
OS _PROCESS* os_create(char * name)
input: name........ name of the instance chosen by the programmer
return: pointer to the TTPos instance

The TTPos instance has to be attached to a controller instance by calling:
void os_attach_controller(OS _PROCESS* os, CONTROLLER* cntrl)
input: 0s........pointer to the TTPos instance

cntrl.....pointer to the controller instance

During the start up the cluster transits from the STARTUP mode to the APPLICATION mode. We define the
conditions of the transition and we choose the exact application mode by calling:
void os_set_mode_trigger(OS PROCESS *os, unsigned min_cnt, unsigned mode)
input: OS.eveennn. pointer to the TTPos instance
min_cnt...minimal number of nodes synchronized with the cluster
mode.......the number of the destination mode

6 3 Adding Life-sign Update

unsigned os_add_lifesign_update(OS PROCESS* os, unsigned time)
input: OS..ueenen. pointer to the TTPos instance

time.......time of execution in macro-ticks relative to the beginning of the cluster cycle
return: index of the life-sign update task in task table or —1 if an error occurred

6 4 Adding Application Task

unsigned os_add_task(OS_PROCESS *os, char *name, unsigned time, unsigned modes, OS_TASK _FN
prog, void *prog_arg)
input: OS..ovvnnn pointer to the TTPos instance
name.....name of the task chosen by the programmer
time.......time of execution in macro-ticks relative to the beginning of the cluster
modes...a 32 bit mask defining in which modes the task should be executed
prog......the pointer to the function defining the body of the task
arg....... the arguments of the prog function
return: index of the life-sign update task in task table or —1 if an error occurred

The TTPos executes an initialization task at the startup of the node. An initialization task can be added by
calling:
void os_add_init_task(OS_PROCESS *os, OS_TASK_FN prog, void *prog_arg)
input: OS..ovvnnn pointer to the TTPos instance
prog......the pointer to the function defining the body of the task
arg........ the arguments of the prog function
return: index of the life-sign update task in task table or —1 if an error occurred

6 5 Interrupt Handling Service

We can insert a pointer to a interrupt handler into the interrupt handler by calling:
void os_add xx_interrupt(OS_PROCESS *os, OS_TASK _FN prog, void *arg)
where xx is the interrupt identifier according to the left column of Table 3-3.

input: OS..vvvnnen. the pointer to the TTPos instance
prog.......the pointer to the function defining the body of the handler
arg........the arguments of the prog function

An interrupt can be enabled or disabled by calling:
void os_enable_xx_int(OS_PROCESS *os, unsigned state)
where xx is the interrupt identifier according to the left column of Table 3-3.
input: state......1 for enabling, 0 for disabling

implicitly all interrupts are disabled.

We can receive the EDM data structure by:
OS EDM _COUNTERS *os_get_edm_counters(OS_PROCESS *os)
input: OS.evvvnnn. the pointer to the TTPos instance
return: the current EDM data structure

We can clear the EDM data structure by calling:
void os_clear_edm_counters(OS_PROCESS *os)
input: OS..ueenn. the pointer to the TTPos instance

6 6 CNI Access Service

The layout of the message area is determined by the current message descriptor list (MEDL), which contains the
addresses of all messages sent/received by the node. An entry of the CNI message area consists of the message
status field and its associated message data field. The message status field provides information on the
transmission of the frame(s). It allows the host to detect if the message has been correctly received or not. It
consists of the Error Indication Field (EIF) and the Concurrency Control Field (CCF). The MSB of the EIF,
which is called the reception status (RS) flag, determines whether the frame was received correctly. The value of
the EIF is used for the frame from the controller to the host and from the host to the controller as well. Therefore
the host application has to set the EIF to a reasonable value every time a frame is copied to the CNI (i.e., the RS
flag must be set). When the controller reads a frame from the CNI, it examines the value of the RS flag. If this
flag is not set, a host error is raised and the controller transits into the passive state. Only if the RS bit is set a
transmission of the frame takes place. When the controller itself writes a frame to the CNI, the EIF is set
according to the reception status of the frame. The CCF is used by the non-blocking write protocol when
accessing a message [Spec99].

Validating the EIF field for one channel:
void os_validate eif(OS PROCESS *os, unsigned addr)
input: OS.evaevnen the pointer to the TTPos instance
addr....address of the message in the CNI message area
Validating the EIF field for both channels:
void os_validate_rep _eif(OS _PROCESS *os, unsigned addr[2])
input: OS..ovvnnn the pointer to the TTPos instance
addr.......addresses of the messages in the CNI message area

Setting the data field for one channel:
void os_set_data(OS _PROCESS *os, unsigned addr, char *buf, unsigned size);
input: OS..vaevaen the pointer to the TTPos instance
addr.......address of the message in the CNI message area
buf.......... pointer to the data
size........ size of the data
Setting the data field for both channels:
void os_set_rep_data(OS _PROCESS *os, unsigned addr[2], char *buf, unsigned size);

input: OS..ovvnnn the pointer to the TTPos instance
addr.......addresses of the messages in the CNI message area
buf.......... pointer to the data
size........ size of the data

Reading the data field for one channel:
unsigned os_get data(OS _PROCESS *os, unsigned addr, char *buf, unsigned size);

input: OS..vvenen the pointer to the TTPos instance
addr.......address of the message in the CNI message area
size........ size of the data

output: buf......... pointer to the data

return: 0 if RS of the EIF not set, >0 if the RS of the EIF set
Reading the data field for both channels:
unsigned os_get rep_data(OS_PROCESS *os, unsigned addr[2], char *buf, unsigned size);

input: OS..covvnn the pointer to the TTPos instance
addr.......addresses of the messages in the CNI message area
size........ size of the data

output: buf.......... pointer to the data

return: 0 if RS of none EIF not set, >0 if the RS of one of the EIF set
The stores into the ‘buf’ the value from the first channel if it is valid. If it is not valid the value from the
second channel is stored.

We can trigger a mode change by calling:
unsigned os_request_mode_change(OS_PROCESS *os, unsigned mode, unsigned

immediate);

input. os........... the pointer to the TTPos instance

mode.....the relative mode address (see [Spec99])
immediate..1 for immediate change, 0 for deferred change

output: 0 if successful, nonzero if not permitted

Following function deliver information about:
e time in macro-ticks relative to the beginning of the cluster cycle:
unsigned os_get time(OS_PROCESS *os)

¢ my sending slot and the current slot

unsigned os_get my_slot(OS _PROCESS *os)
unsigned os_get current_slot(OS _PROCESS *os)

e current cluster cycle

unsigned os_get transmission_cycle(OS PROCESS *os)
The input parameter is the pointer to the TTPos instance.

